
AFRL-IF-WP-TR-2001-1551 

ADAPTERS: A DOMAIN-SPECIFIC 
PROGRAMMING AND DEVELOPMENT 
TECHNOLOGY FOR RUN-TIME 
RECONFIGURATION AT THE SYSTEM LEVEL ^S5^^ 

JOHN SHACKLETON 

Honeywell Laboratories, Inc. 
3660 Technology Drive 
Minneapolis, MN 55418 

JULY 2001 

FINAL REPORT FOR PERIOD 25 MAY 1998 - 25 JULY 2001 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

INFORMATION DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE OH 45433-7334 

20020402 139 
_y 



NOTICE 

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN 
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT 
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE 
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR 
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR 
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, 
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM. 

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE 
(NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING 
FOREIGN NATIONS. 

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION. 

KERRY L.-HILL ' 
Project Engineer 
Embedded Info Sys Engineering Branch 
Information Technology Division 

ALFR^b J. SCÄRPELLI  I 
Team Leader 
Embedded Info Sys Engineering Branch 
Information Technology Division 

GAMES S. WIL 
»iÄB^ 

WILLIAMSON, Chief 
Embedded Info Sys Engineering Branch 
Information Technology Division 
Information Directorate 

Do not return copies of this report unless contractual obligations or notice on a specific document requires its return. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining 
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for 
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a 
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  

1. REPORT DATE (DD-MM-YYYY) 
25/07/2001 

2. REPORT TYPE 
Final Report 

4. TITLE AND SUBTITLE 
ADAPTERS: A Domain-Specific Programming and Development Technology 

for Run-Time Reconfiguration at the System Level 

3. DATES COVERED (From - To) 
25 May 98 - 25 July 01 

5a. CONTRACT NUMBER 
F33615-98-C-1320 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 
69199F 

6. AUTHOR(S) 
John Shackleton 

5d. PROJECT NUMBER 
ARPI 

5e. TASK NUMBER 
FT 

5f. WORK UNIT NUMBER 
"    01 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Honeywell Laboratories, Inc. 
3660 Technology Drive 
Minneapolis MN 55418 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

NA 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Information Directorate . 
Air Force Research Laboratory 
Air Force Materiel Command 
WPAFB, OH 45433-7334 

10. SPONSOR/MONITOR'S 
ACRONYM(S) 

AFRL/IFTA 

11. SPONSOR/MONITOR'S 
REPORT NUMBER(S) 

AFRL-IF-WP-TR-2001-1551 
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public  release,   distribution unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
The ADAPTERS project in general is an attempt to fill the current void in system design and 
integration technology for systems, which include ACS based processing nodes. The approach 
taken was to develop and integrate ACS tools within existing system level tools. The 
resulting technology is a more integrated co-design environment, which focuses on three 
primary technology areas: programming environments, partitioning, mapping, and trade-off 
analysis, and dynamic run-time environments. 

15. SUBJECT TERMS 
ACS (Adaptive Computing Systems), reconfigurable computing, field-programmable gate arrays 
or FPGAs, system design, co-design, programming environments, partitioning, mapping, and 
trade-off analysis, and dynamic run-time environments 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

C. THIS PAGE 
Unclassified 

17. LIMITATION 
OF ABSTRACT 

SAR 

18. NUMBER 
OF PAGES 

36 

19a. NAME OF RESPONSIBLEPERSON 
Kerry Hill 
19b. TELEPHONE NUMBER 

(include area code) 
(937)255-6548   X3604 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



Table of Contents 

Section Page 

PREFACE V 

1. PROJECT OBJECTIVES 1 

2. TECHNICAL APPROACH 4 

2.1 Prior State of the Art 4 

2.2 ADAPTERS Approach 5 
2.2.1 Domain-Specific Application Development Environment 5 
2.2.2 Partitioning and Mapping Tradeoff Environment 7 
2.2.3 Dynamic Reconfigurable Run-Time Environment 8 

3. SUMMARY OF ACCOMPLISHMENTS 10 

3.1 Programming Environments 10 

3.2 Partitioning and Mapping Tradeoffs 11 

33        Dynamic Run-Time Environments 12 

3.4        Technology Transfer 15 

4. CONCLUSIONS AND FUTURE WORK 17 

4.1 System Design Tool Support 17 

4.2 Run-Time Integration Support 18 

4.3 Partial Reconfiguration „ 20 

4.4 Future ACS Domains 20 

5. ACADEMIC PAPERS 22 

6. ACKNOWLEDGEMENTS 23 

LIST OF ACRONYMS 24 

in 



List of Figures 
Figure Page 

1 Six DADE Views that Capture Different Aspects of an Embedded 
System 6 

2 The Mode Interaction of the Image Compression ADAPTERS 
Demonstration 12 

3 A DADE Capture of the CFAR Demonstration Implemented on the SLAAC-1 
Platform 13 

4 A DADE Capture of the Functional Dataflow of the Missile-Tracking 
Demonstration 14 

5 A DADE Capture of the DES Demonstration Combining Mode-Based Scheduling 
with Dataflow Based Scheduling 15 

IV 



Preface 

This work has been supported by the Defense Advanced Research Projects Agency 
(DARPA) under Contract No. F33615-98-C-1320. 

Any opinions, findings and conclusions or recommendations expressed in this material are 
those of the authors and do not necessarily reflect the views of DARPA. 

Project Contact: John Shackleton (john.j.shackleton@honeywell.com) 



1.  Project Objectives 
The charter for the Adaptive Computing Systems (ACS) project has been to advance the 
computer technologies that incorporate dynamic hardware configuration capabilities, with 
the intent of making the resulting devices more prevalent in future DoD systems. 
Reconfigurable components such as field-programmable gate arrays (FPGAs) have proven 
to be very promising design options for certain embedded domains. For applications in 
these domains, ACS-driven systems have reduced size, weight, power, and greatly 
improved performance and design flexibility compared to more conventional general 
purpose processor (GPP) and digital signal processor (DSP) systems, without the 
prohibitive development and maintenance costs of point-solution application specific 
integrated circuits (ASICs). 

Much of the ACS program has focused strictly on the hardware devices themselves, 
investigating new device subcomponent designs, programming, and compiler technology. 
In the ADAPTERS1 project, an ACS thrust led by Honeywell Laboratories, we have 
concentrated on the challenges of the ACS technologies at the system level. From the 
beginning of the project, the ADAPTERS partnership of Honeywell Laboratories, 
University of Southern California/Information Sciences Institute (USC/ISI), and 
Honeywell Space Systems has recognized that for successful insertion into DoD embedded 
systems, advances must be made at the system-level design infrastructure. 

Adding FPGAs to a GPP and/or DSP creates a heterogeneous system with a significant 
increase in the system design space. In reality, ACS technology will not operate in 
isolation, but instead will be part of a mix including reconfigurable devices, GPPs, and 
DSPs. The performance gains of ACS technology are only realized when the 
reconfigurable hardware components are integrated into a larger embedded system. The 
more seamless the integration, the easier it becomes to take advantage of reconfigurable 
technology. Reconfigurable devices are already difficult to design and program, their run- 
time adaptability creates an extra design variable previously unexplored in embedded 
system design, and thus their integration is itself a complex design task. 

The benefits of system-level integration improvements are less tangible than improvements 
at the component level. Processing speedup, for example, is marginal, once system design 
and integration is complete. However, the schedule and cost savings for the overall system 
development are obvious. Testing and integration costs are also greatly improved. Tasks 
that previously required months of development are reduced to days, and seamless 
integration support gives system designers the tools they need to build ACS solutions in 
ways previously unavailable. 

The overall object of ADAPTERS is therefore to reduce, in terms of programming and 
development effort, the cost of inserting configurable computing elements into large-scale 
applications on heterogeneous architectures. The objectives can be further decomposed 
into the following goals: 

1 ADAPTERS is an acronym that stands for A DomAin-specific Programming and development Technology 
for run-time Reconfiguration at the System-level 



• Reduce ACS programming and integration costs for heterogeneous embedded systems. 
• Provide system engineers the means to conquer an increasing system design space as a 

result of ACS technology. 
• Develop design technology that includes run-time reconfiguration requirements at the 

system level. 

The remainder of this document is a summary of the research conducted on the 
ADAPTERS project. Further details not covered here will be referenced in other 
ADAPTERS documentation, listed in Table 1. 



Table 1: ADAPTERS Technical Documentation 

Document File Name Description 
Missile ATR/Tracking 
Report 

cdrla006-mtrk.doc Definition of the missile-tracking 
application and its requirements in the 
ADAPTERS environment 

SAR/ATR Report cdrla006-sar.doc Definition of the Synthetic Aperture 
Radar/Automatic Target Recognition 
(SAR/ATR) application and its 
requirements in the ADAPTERS 
environment 

Interfacing Stressmark cfar-interfacing.doc Definition of the Constant False Alarm 
Rate (CFAR) application, defined on the 
ACS benchmarking project 

DADE Users' Manual cdrla007-users.doc Users' manual for the Domain-specific 
Application Development Environment 
(DADE) system design tool 

DADE Template Based 
Generation of Hardware 
Specifications 

cdrla007-hwgen.doc Manual describing how the DADE 
systems design environment models 
hardware specifications 

ATOT-PM Tutorial and 
Demonstration Notes 

cdrla008-atot.doc Document explaining Architecture Trades 
and Optimization Toolset (ATOT) and its 
CFAR demonstration 

PML Users' Manual cdrla008-pml.doc Users manual for the ADAPTERS 
specific features of the Performance 
Modeling Library 

SLAAC Tradeoff Study cdrla009-slaac.doc Description of the Systems Level 
Applications of Adaptive Computing 
(SLAAC) tradeoff study performed on the 
SLAAC-1 architecture using ATOT 

Run-Time Environment 
Requirements 

cdrla010.doc Run-Time requirements for adaptive 
computing systems 

Dynamic Reconfiguration 
Run-Time Environment 

cdrla011-drrte.doc Description of the ADAPTERS dynamic 
reconfiguration run-time environment 

Run-Time Reconfiguration 
Support with Multi-Level 
Caches 

cdrla012-des.doc Results of the ADAPTERS partial 
reconfiguration demonstration 

Missile- Tracking 
Demonstration 

cdrla012-mtrk.doc^ Results of the ADAPTERS missile- 
tracking demonstration 

Space Application 
Evaluation 

cdrlaO 13-space.doc Results of the Honeywell Space 
evaluation of the ADAPTERS tool suite 

Image Compression 
Results 

lmage-compression- 
results.ppt 

Results of the image-compression 
demonstration (viewgraphs) 

2 The Missile Tracking Demonstration document has been updated to coincide with the 10/25/2001 release of 
this final report. 



2. Technical Approach 
The ADAPTERS project in general is an attempt to fill the current void in system design 
and integration technology for ACS solutions. At the outset of the ACS program, very little 
system design support existed for platforms that included reconfigurable devices, and thus 
our approach has been to develop an integrated co-design environment focusing on three 
primary technology areas: 

1) Programming environments, 
2) Partitioning, mapping, and tradeoff analysis techniques, 
3) Dynamic run-time environments that support FPGAs. 

2.1   Prior State of the Art 
Before discussing the ADAPTERS technical approach, first we should briefly describe the 
state of the art prior to the ACS program inception (around 1997). A number of system- 
level programming environments have been evolving over the last decade, including the 
following: 

• Ptolemy from UC-Berkeley (http://ptolemy.eecs.berkeley.edu) 
• GEDAE from Lockheed Martin Advanced Technology Laboratory (www.gedae.com) 
• ObjectGEODE from Telelogic (http://www.telelogic.com/products/objectgeode) 
• Simulink from Math Works (http://www.mathworks.com/products/simulink/) 
• Autocoding Toolset from MCCI (http://www.mcci-arl-va.com'initiaIpage.htm) 

Each of these sample toolsets address the obstacles to system level embedded design from 
a particular angle, although none directly address the issues of ACS design integration. 
Ptolemy, for example, concentrates on how to take an algorithm and derive design 
specifications for the configurable hardware devices. The other four samples, GEDAE, 
ObjectGEODE, Simulink, and the Autocoding Toolset from MCCI, each provide 
mechanisms for generating system-level application code, but none support automatic 
integration with reconfigurable platforms. The user of these tools can manually bridge the 
gap between ACS solutions and more traditional systems implemented on DSPs or GPPs, 
although such a step requires intimate knowledge of the toolsets and their autocoding 
nuances. 

Similarly, prior to the ACS program, there had been no tool support for system design 
evaluations and simulation that explicitly targeted reconfigurable hardware platforms. 
Along with a proliferation of simulation environments developed in the academic 
community, a couple of the more popular commercial offerings include the following: 

• SES/Workbench from HyPerformix (formally a company called SES, 
http://www.hyperformix.com/products/workbench.htm) 

• MATLAB from Math Works (http://www.mathworks.com/products/matlab/) 



Again, with these tools and many like them, the user can take steps to approximate the 
effects of reconfigurable components on an embedded system, but none have considered 
reconfigurable issues up front in the design evaluation. 

In the area of system run-time environments, a natural evolution toward better ACS 
support has taken place. ADAPTERS team member USC/ISI has been part of the Systems 
Level Applications of Adaptive Computing (SLAAC) development effort to standardize 
board-level application programming interfaces (APIs) and services for ACS applications. 
Above the API level, however, little prior attention has been paid to other crucial run-time 
issues: 

• Coherent integration with real-time scheduling engines, to manage collections of 
distributed interdependent reconfigurable tasks 

• Commumcation that is transparent to the application between functions implemented 
on reconfigurable components and functions hosted on general processing components 

• Efficient buffer and memory management in distributed heterogeneous systems that 
include reconfigurable components (poor memory management increases overhead) 

• Middleware service support for partial reconfiguration above the API level. 

2.2   ADAPTERS Approach 
Our approach is to fill the void in system level design for ACS applications via three 
components of the ADAPTERS tool suite, each addressing a technology area objective 
described in first section of this document: 

• Domain-specific Application Development Environment (DADE) 
• Partitioning and Mapping Tradeoff Environment (PMTE) 
• Dynamic Reconfigurable Run-Time Environment (DRRTE) 

The ADAPTERS tools suite is summarized here, and the technical details are left to prior 
ADAPTERS documentation. 

2.2.1   Domain-Specific Application Development Environment 
DADE is a unified design environment for embedded adaptive systems. A unified 
environment provides the systems engineer a single graphical notation and tool from which 
multiple design simulation and code-generation activities may be initiated. Such activities 
in DADE include the following: 

• General modeling of system hardware, application software, and the mapping of 
software onto hardware 

• Auto-analysis of system architecture, end-to-end latency evaluation, and automatic 
functional partitioning 

• Performance modeling and behavioral simulation 
• Modeling and automatic generation of hardware specifications for integration with 

configurable hardware devices. 



•   Automatic generation of application "glue code" that is compiled and linked into the 
ADAPTERS dynamic run-time environment; The term "glue code" in this context 
refers to the software that integrates library function code with a run-time engine. 

As shown in Figure 1, DADE is used to model different aspects of an embedded system 
(e.g., target hardware, system dataflow, functional hardware-software mapping, and mode 
scheduling) with an emphasis toward configurable computing technology. DADE is also 
template based, which means that all design components in the unified system model are 
built from a library of template objects. The template-based approach enables the system 
engineer to better reuse and parameterize design components. Moreover, the DADE user 
may select a configuration of software to hardware function mapping from several 
alternatives, and auto-generate its application code. Such an approach enables the system 
designer to experiment and test various designs quickly, and without prohibitive debugging 
of integration code. 

The details of DADE and its capabilities are described in the DADE Users' Manual and 
the DADE Template Based Generation of Hardware Specifications document. 

SSSJBSJSIteEM." .-.JBi 

Data Type Editor 
Application Editor 

Hardware Editor 
Mode Editor 

Figure 1: Six DADE Views that Capture Different Aspects of an Embedded System 
Design 



2.2.2   Partitioning and Mapping Tradeoff Environment 
The ADAPTERS tools suite leverages two technologies that enable the design engineer to 
narrow and understand the large complex design space of ACS applications. Collectively 
these tools comprise the PMTE development thrust of ADAPTERS: 

• Architecture Trades and Optimization Toolset (ATOT) 
• Performance Modeling Library (PML) 

2.2.2.1 Architecture Trades and Optimization Toolset (ATOT) 
ATOT is a system analysis tool that performs the following design activities: 

• Suggests ways in which functional tasks in the system design are partitioned and 
parallelized, based on performance requirements 

• Searches for a good mapping configuration of function tasks in software-to-hardware 
processing resources, based on task constraints and hardware capabilities 

• Performs an end-to-end latency analysis over candidate software-hardware mapping 
solutions 

• Evaluates the feasibility of implementing certain functions on FPGA devices, and 
determines the impact on the rest of the system 

• Integrates with DADE such that the DADE graphical tool automatically generates 
ATOT input. 

Details on ATOT can be found in the document A TOT-PM Tutorial and Demonstration 
Notes. 

2.2.2.2 Performance Modeling Language (PML) 
Performance modeling is a special kind of modeling that encourages high-level design 
abstraction and top-down refinement. Instead of diving into the details right away, 
performance modeling encourages the designer to concentrate on the most pervasive (and 
usually most important) system design requirements first. Typically, these requirements 
focus on general criteria such as component utilization, latency, and throughput. However, 
in complex systems, it is often necessary to model more detailed criteria, such as intricate 
hardware/software interactions, operating system overheads, cache and memory access, 
and network protocol behavior. 

The PML addresses these issues. The PML is a prototyping library based on the Very High 
Speed Integrated Circuit (VHSIC) Hardware Description Language"(VHDL) that aids the 
design of system level models. It has the following features: 

• A robust processor model that captures the high-level performance behavior 
incorporated in most commercially available processors, including on-board memory 
and cache access, interrupt handling services, and instruction set characterizations. 

• Software modeling that operates separately from the hardware characterizations, and 
encourages hardware/software co-design. 



• Task scheduling capabilities that implement local and remote task communications, 
preemptive tasking, static or dynamic scheduling, rate monotonic scheduling, 
distributed scheduling, and other services one would expect from a run-time executive 
or a general purpose operating system. 

• A lightweight processor model that allows the designer to create single-threaded 
applications without the overhead of a complete operating system. 

• Report generators that automatically provide detailed accounts of processor task 
activities, missed deadlines, processor utilization, task utilization, and overall latency. 

Moreover, the PML has been extended for the ADAPTERS effort to include an FPGA 
component that models the behavior, overhead, and processing capabilities of a typical 
adaptive computing device. This FPGA component is fully parameterizeable, and is 
designed to support the general performance modeling requirements of all adaptive 
computing systems. Further details on the PML are found in the document PML Users' 
Manual. 

2.2.3  Dynamic Reconfigurable Run-Time Environment 
Adaptive computing uses reconfigurable elements in combination with other computing 
resources to achieve speedup for compute-intensive algorithms. While adaptive computing 
has shown promise in providing high performance, the low level at which it is programmed 
makes software support for adaptive computing critical to its success. Software support 
can be divided into two types: design tools and run-time support. Design tools such as 
DADE are used to help the system designer map applications to the programmable logic 
and other parts of the adaptive computing system. However, design tools alone are not 
sufficient to take advantage of the computing power of adaptive computing systems. A 
run-time environment is needed to support application programming in much the same 
way an operating system is needed in a general purpose computing system. The run-time 
support abstracts the system designer from having to deal with low-level programming 
details, such as which control lines need to be manipulated to communicate data from one 
subsystem to another or how to configure an FPGA. 

The ADAPTERS team has brought three facets together to address the area of dynamic 
reconfigurable run-time environments: 

• SLAAC board APIs and services 
• MetaH, mode based scheduling kernel 
• Dataflow based scheduling run-time associated with DADE. 

2.2.3.1 SLAAC (Systems Level Applications of Adaptive Computing) 
SLAAC creates an open, standards-based, scalable systems definition and a commercial 
off the shelf (COTS) based reference-platform implementation distributed to the ACS 
research community to establish interoperability, lower the barriers, and accelerate the 
integration of new research results into defense testbeds and flights. Particular to the 
ADAPTERS effort are the SLAAC board-level APIs utilized in the application 
demonstrations, and the use of the SLAAC-1 and SLAAC-IV boards. Moreover, an 
innovative multilevel caching scheme has been developed on ADAPTERS to improve 



performance of applications that are capable of partial reconfiguration, the details of which 
are found in the document Run-Time Reconfiguration Support with Multi-Level Caches. 

2.2.3.2 MetaH 
MetaH is an architecture description language (ADL) developed originally at Honeywell 
Laboratories from which several design activities may take place: 

• A closed form system is modeled in terms of hardware components, software 
processes, system modes, and the modal transitions 

• The system is formally validated and its schedulability analyzed 
• System requirements are automatically generated into a real-time application kernel. 

The ADAPTERS project builds upon MetaH to demonstrate mode-scheduled applications 
in a configurable computing environment. Details on the insertion of MetaH into the 
ADAPTERS demonstrations are covered in the document Dynamic Reconfiguration Run- 
Time Environment. 

2.2.3.3 DADE Run-Time 
The ADAPTERS dataflow based execution environment provides the dynamic, event- 
triggered run-time support for most of the ADAPTERS demonstrations. In summary, the 
run-time capabilities include the following: 

• Seamless integration with the DADE system design environment 
• Hosting of an application across a distributed heterogeneous platform 
• Automatic management of remote communications and buffers 
• Automatic management of parallel tasks, data distribution, and multitasking 
• Automatic management of ACS board-specific requirements (currently supporting the 

WILDFORCE, STARFIRE, and SLAAC-1 board implementations). 

Details on the DADE dataflow run-time are also covered in the document Dynamic 
Reconfiguration Run-Time Environment. 



3. Summary of Accomplishments 
The following section summarizes the accomplishments of the ADAPTERS project, 
categorized by its three main technology areas: programming environments, partitioning 
and mapping tradeoffs, and dynamic run-time environments. 

3.1    Programming Environments 
Throughout the ADAPTERS project, DADE serves as the launching point for all other 
development activities. DADE models have been built to capture the software, hardware, 
and system mapping requirements of all the ADAPTERS demonstrations. In addition, 
DADE was used to define the hardware specifications for a sample CORDIC application 
implemented on the Annapolis Microsystems WILDFORCE board, documented in DADE 
Template Based Generation of Hardware Specifications. Thus DADE acts as the central 
repository for all ADATPERS architecture and integration designs. 

From our work with DADE, a general methodology has emerged. The following lists the 
general process we came to use when employing DADE on an application: 

1. First import libraries of existing application functions into DADE 
2. For functions not modeled in an existing DADE library, function archetypes are 

created on the DADE shelf repository, which identifies the platforms on which the 
function is implemented, and its associated parameter list 

3. The data types required by the functional flow of the system are modeled in the Data 
Type Editor 

4. Functions are then copied from the shelf repository to the Application Editor, to 
describe the functional data-flow of the application 

5. Data types are assigned to the functional flow in the Application Editor, thereby 
defining the types and sizes of data passed through the functions 

6. For functions implemented on reconfigurable devices, such as an FPGA, the user has 
the option of defining its hardware specification; the specification may be a complete 
design that is used to create an image for the device, or it may simply act as integration 
code for existing hardware specification components 

7. At some point in the process, the system hardware architecture is modeled in the 
Hardware Editor, the boards and processing devices in the system, the buses and 
memories 

8. Functions from the Application Editor are then mapped to computing resources in the 
Hardware Editor; platform-specific information about the functions, such as their 
parameters lists, are inferred from the shelf repository 

9. Optionally, the user may group the functions into modes in the Mode Editor 
10. Once the application is modeled, the user can initiate other design activities: 

automatically generate hardware specifications, pass design information to ATOT for 
further evaluation, or automatically generate glue code that is linked and compiled with 
the DADE run-time for execution on the target platforms. 

10 



It is important to note what DADE does not attempt to do as a design tool. DADE does not 
design algorithms for implementation on ACS platforms, nor does it generate the 
application code itself. Other tools exist, such as MATLAB, which are used for application 
and algorithm development. Instead DADE generates the surrounding glue that integrates 
existing modularized application code into the DADE run-time environment. The glue- 
code handles local and remote function-to-function communication and data distribution. 
Also, DADE is not meant to design hardware components. Although it does model 
hardware at the system architectural level as a reference to application functions, DADE is 
not the right tool if you need to design the hardware devices themselves. Overall, DADE is 
a system design and integration technology employed to rapidly connect together libraries 
of functions to be hosted on distributed heterogeneous platforms that include 
reconfigurable devices. 

Honeywell Space Systems has done an evaluation of DADE that is found in the document 
ADAPTERS Space Application Evaluation. 

3.2   Partitioning and Mapping Tradeoffs 
Both ATOT and PML, the two technologies applied to this problem area, were developed 
prior to the ADAPTERS project. ATOT had been an ongoing research activity for years, 
developed internally at Honeywell Laboratories. The PML has its roots in the Defense 
Advanced Research Projects Agency (DARPA) Rapid prototyping of Application-Specific 
Signal Processors (RASSP) program that completed in 1997. Each technology was 
extended on the ADAPTERS project to address the special needs of ACS systems. 

ATOT was extended to model the effects of reconfigurable devices on an embedded 
heterogeneous system. Characterizations of an FPGA device were added to ATOT, so that 
the system designer can more accurately gauge the design effects of the FPGA components 
in the system. Measurable design criteria to include end-to-end latency, throughput, and 
the effects of parallelism. The updated ATOT toolset also makes suggestions on how 
functions can fit on an FPGA based on their physical layout requirements. A first-order 
analysis can be made before expensive place-and-route designs are performed, thereby 
saving valuable design time. USC/ISI implemented a sample CFAR application on the 
SLAAC platform and then used ATOT to perform a tradeoff analysis. Their evaluation is 
found in the document SLAAC Tradeoff Study. 

The PML was extended in ADAPTERS to include in its modeling library an FPGA device. 
The modeling component includes a number of behavioral characteristics, such as the 
functional modules on the device, as well as physical characteristics. The FPGA modeling 
component interoperates with the other PML components in its token-based framework. 
An example of its use is defined in the document PML Users' Manual. 

11 



3.3   Dynamic Run-Time Environments 

When we integrate functions at the system level, eventually we must determine how the 
functions are scheduled for execution. In an ACS system, our question takes on added 
meaning because function(s) implemented on reconfigurable devices have additional 
overhead when new configurations are loaded. For the class of applications addressed by 
the ACS program, we have two primary paradigms for run-time scheduling: dataflow 
scheduling and mode-based scheduling. For ADAPTERS, we first addressed the two 
approaches separately in their own demonstrations and then brought them together for the 
final demonstration of the project. 

MetaH was first applied to a sample image compression demonstration, implemented on an 
Annapolis Microsystems' STARFIRE board hosted by Pentium/NT platform. MetaH is a 
natural fit for ACS embedded applications because device reconfigurations most often 
occur as a result of a mode or state transition in the overall system. For example, as in the 
image compression demonstration, when a new stage in the compression algorithm is 
encountered, a mode change is initiated, and the underlying FPGA requires a new 
configuration download. Results of the image compression demonstration are documented 
in the Image Compression Results viewgraphs. Figure 2 illustrates its mode architecture. 

O Mode on NT host 
Mode on FPGA 

Process 

FPGA 
Interaction 

Download 
Configuration 

lmage->FPGA 
Run 

Download 
Configuration 

Run 

Figure 2: The Mode Interaction of the Image Compression ADAPTERS 
Demonstration 

12 



The DADE dataflow run-time has been applied to the CFAR and missile-tracking 
demonstrations. Both demonstrations are described in detail in the document Dynamic 
Reconfiguration Run-Time Environment. Further detail of the missile-tracking 
demonstrations and its results are described in the document ADAPTERS Missile Tracking 
Demonstration. In these demonstrations, functions were connected as a series of pipelined 
computations. In this environment, a function is triggered when it has data ready in its 
incoming data buffer. The CFAR example was implemented on an Annapolis 
Microsystems WILDFORCE board with a Pentium host and on the SLAAC-1 board with a 
Pentium/NT host (Figure 3): The missile-tracking application has been implemented on the 
several heterogeneous platforms, including the WILDFORCE platform, an Annapolis 
Microsystems' WILDSTAR board hosted by a PowerPC board running VxWorks, and on 
an Annapolis Microsystems' STARFIRE board hosted in a Pentium/NT platform (Figure 
4). 

Elle   Edit   yitw   Layout   Iools   aflriab#6:tielp: 
^Jflxj 

1 

yiirimwiEHtf; 
B£niB;6iniB¥te»«K)i 

JJliHIi! 

m 
m 
o 
t+c 

u. i^Mlili 
^ 

Path! Top 

[Ten 

Compute Local Stair : 

ttmp&t* 

'■ ■: | änMuijöpjjj jtmwt; |T^ 

knags 

Application Editor 

üH 

;Ho«.;"öBM«>i«fi: s i jäiitK'ji'ä i &i»&si>äj: 

LLX 

Hardware Editor 

r-^> 

Figure 3: A DADE Capture of the CFAR Demonstration Implemented on the 
SLAAC-1 Platform 

13 



■MlfflWillfllWillllWill«iHl|tilIW 
Elle   Edll   Yiew   Layout   I00I8    Window   Help 

JaiüJ 

BEIl HI lalo B a 
^> 

*■ 

U)iUI: mis^lt-triclrvftDfitvnd sg« 
fcohetyp«: PI 
Path: Top:P1 

Jkvrit»_pgm 1 4fcuritajigm I 

ntfjm^t 1—A «P. 

Lb<n_3_tot_hyt^ J 

y /      "j/ r———i 

L-I,.*._ptii|j 

Snole Fr. Oner Re).        I \ 

111111 m uftmt_3 jnhar | 

/ )A ■***JWP| I 

3 
♦LL 

Figure 4: A DADE Capture of the Functional Dataflow of the Missile-Tracking 
Demonstration   

The final ADAPTERS demonstration is a sample implementation of the data encryption 
standard (DES). Our DES demonstration is implemented on a SLAAC-1V board, and 
addresses two important technical issues of ADAPTERS. First and foremost is partial 
reconfiguration, the ability of an application to partially reconfigure a device so that 
overhead is reduced while still maintaining the application dataflow. From the beginning 
of reconfigurable technology, it has been the hope that partial reconfiguration will become 
viable and help make dynamic adaptive hardware components even more attractive design 
alternatives. Our DES example is a step toward that end (partial reconfiguration is 
addressed further in the conclusions section of this document). 

The multilevel caching implemented in the DES demonstration improved reconfiguration 
overhead by 40 times. Results are documented in Run-Time Reconfiguration Support with 
Multi-Level Caches. 

The second issue addressed by the DES demonstration is the combination of mode-based 
and dataflow-based scheduling paradigms within the same run-time environment (Figure 
5). The mode-based scheduling approach of MetaH was incorporated in the dataflow 
scheduling software infrastructure of the DADE run-time, such that both scheduling 
options are available within the same dynamic run-time. When both paradigms are active 
in an application at the same time, the mode determines which dataflow pipeline is active. 
An active set of functions will maintain the current dataflow until another mode change 
occurs. At the present time, the combined mode/dataflow scheduling is limited to 
applications that are hosted on a single board. The infrastructure has not been put in place 
yet to support mode transitions that reach across distributed nodes (and this general 
research probably falls outside the scope of ACS). 

14 



Help      flic    Edli   View   Uyoul   Ionls   Window   Uelp 

immiiMmmmSe,: _       JBJ2SJ 
Edli   View   layout   Tools   Window   Help 

B 
Archetyp«; Pn»c««i 
Path: TöfKD»*_C«Bt«jur«; 

m 
□ 

bfo-Jd. OES fffi 

'              > 

i                    .         \) 

giloilälia^hin^a 
MxM. DES .30« 
*rch«typ« Pmts*0 
Path Top^jNy 

Figure 5: A DADE Capture of the DES Demonstration Combining Mode-Based 
Scheduling with Dataflow Based Scheduling  

3.4   Technology Transfer 
Honeywell Space Systems was added to the ADAPTERS project to provide a perspective 
that is grounded in real-world applications. Their role on the project has been twofold: to 
use their experience to evaluate the ADAPTERS toolset, and to identify an application that 
would further exercise the tools. Their results are documented in the Space Application 
Evaluation. 

In addition, as the ADAPTERS project has proceeded, a commercial version of DADE and 
the DADE run-time has emerged through an independent development path initiated by a 
group at Honeywell Space Systems3. The commercial version of DADE is called SAGE 
(Systems and Applications Genesis Environment) and includes a number of system design 
features inside and outside the scope of ACS. Information on SAGE is located at the web 
site www.honeywell.com/sage. Features in the commercial version of the toolset that are a 
direct result of the ADAPTERS development include: 

3 The commercial tools development group is a different group than those who performed the ADAPTERS 
evaluation, although the two groups work together and are located in the same facility. 

15 



Hybrid mode-based and dataflow based scheduling in the run-time environment (the 
idea originated from the ADAPTERS image-compression demonstration) 
The Mode Editor in DADE 
Most of the template-based programming features of the DADE shelf repository 
The automatic VHDL specifications generated by DADE 
Support for reconfigurable hardware devices in the run-time. 

16 



4.  Conclusions and Future Work 
Research like ADAPTERS is important because it recognizes that the largest costs in 
embedded systems design and maintenance are no longer at the component level, but at the 
system level where integration takes place. Current trends in military systems are toward 
COTS solutions as much as possible, and as a result, more complexity is pushed into the 
layers of the system that service COTS components and bridge the communications 
between them. Trends are also toward hosting more functionality onto fewer computing 
devices, or reducing the number of boxes that an embedded military application requires. 
Consequently, the integration task becomes even more complex, because computing 
resources must be shared among a growing number of application tasks. 

ACS technology fits well into this vision. Reconfigurable devices such as FPGAs require 
less power, are often smaller than GPP and DSP devices, and offer better performance. 
While FPGAs in general are not as fast as hard-wired ASICs, their hardware is less 
expensive to develop because of their COTS availability, and random access memory 
(RAM) reconfigurable FPGAs are dynamically programmable and therefore much more 
maintainable than ASICs. 

FPGAs should not be used everywhere. GPPs and DSPs are more cost-effective solutions 
for many applications, and ASICs still have a niche in embedded system design. For those 
applications that do fit the criteria for FPGA implementation, however, such as single 
instruction, multiple data (SMD) or multiple instruction, multiple data (MIMD) compute- 
intensive pipelined applications, ACS technology is the way to proceed, assuming enough 
system design and run-time support is available. 

Our concluding observations will be presented in the following four categories: 

• System design tool support 
• Run-time integration support 
• Partial reconfiguration 
• Future ACS domains. 

4.1    System Design Tool Support 
A gap currently exists in design tool technology between a system level of abstraction and 
design at the component level. Computer aided design (CAD) tools like Synplicity enable 
a design engineer to build an FPGA component, but very few features are in the tools that 
enforce the system level requirements that will impact component design. Conversely, 
high-level design tools have very little visibility into the low-level design of components, 
and thus system level architectures are often over designed with too much redundancy. It is 
a constant tradeoff, between hiding detailed component-level design information, and 
making this information available to improve component integration of a design at the 
system level. Design engineers are forced to understand all the requirements that overlap 
system level and component level designs without much current tool support. 

17 



Design tools at the different levels of abstraction in general do not speak the same 
language; they require different types of domain knowledge, and they often work from a 
conflicting set of goals. For example, at the component level, the design may try to 
optimize performance, while at the system level the goal is future maintainability, and as 
experience shows, these requirements often work against each other. This dichotomy is 
particularly obvious in ACS applications, in which configurable components by their 
nature require low-level hand tweaked detail to improve performance, thereby making their 
seamless integration into a larger heterogeneous system more difficult. 

The ADAPTERS works shows that such a gap in tool technology exists, and it is not a 
clear problem to solve for embedded heterogeneous systems. The final answer more likely 
calls for a more varied tailorable approach. Instead of trying to find a huge monolithic tool 
suite that satisfies every design activity, the answer more likely lies in a collection of 
loosely coupled tools that provide more flexible, programmatic properties and interfaces. 
Design tools of the future should become more plug-and-play so that design information is 
more easily shared between levels of abstraction and between different applications. In the 
design environments of the future, especially in the context of ACS technology, one size 
no longer fits all. 

The other issue that ADPATERS uncovered in terms of design tools is the need for system 
level integration support for ACS applications. Reconfigurable devices will not operate in 
a vacuum, but will reside within heterogeneous systems sharing computational 
responsibilities with other kinds of components. As a result, the design tools used in the 
future will have to model, evaluate, and generate design artifacts for systems that include 
reconfigurable devices, as well as more traditional components such as GPPs and standard 
buses. This is the approach we started under ADAPTERS. A few general rules have 
emerged: 

• Unlike general software functions that have no physical limitations to their mapping, 
functions implemented on an FPGA are constrained by their physical layout and I/O. 
Not every function implemented on an FPGA can be co-located with another function 
on the same device, and the mapping of functions to reconfigurable devices is a non- 
deterministic polynomial (NP) complete problem. 

• The designers of FPGA components and the designers of system-level architectures 
will in reality come from different engineering backgrounds, and likely will not speak 
the same language. They will, however, have to learn to work together since many of 
their requirements will overlap. Integrated tool technology can help overcome these 
barriers. 

• It is best to perform system analysis and tradoffs as soon as possible in the design 
process. The sooner the impact of certain low-level design decisions is understood at 
the system level, the more efficient the system architecture will become, and the easier 
it will be to address major design integration problems. 

4.2   Run-Time Integration Support 
Thanks to the SLAAC effort, the ACS community is moving toward standardization on 
how to manage adaptive applications at the board interface level. Nevertheless, the 

18 



ramifications of this movement will impact how applications are developed at the system 
level, and we must continue to gain a better understanding of these implications. Improved 
understanding of integrated systems will happen naturally over time, as the board-level 
APIs and services are further refined. The wider the scope of applications that are 
implemented with a COTS-based interface, the more applicable and robust the interfaces 
and APIs become. 

Over the last decade, we have seen embedded operating systems increase their support 
services as well understood application tasks are pushed down into the operating system 
layer of software. A similar fate is destined for run-time software that supports ACS 
platforms. As the community builds up domain knowledge of what kinds of services are 
most useful, those services will gradually migrate from the application layer to the run- 
time support layer. The same is true for the lower levels of abstraction as well. As COTS 
hardware vendors learn what configurations and behaviors are most important to the 
component developers, then such support as programmable macros and configuration 
libraries will trickle up to the board-level API and become more accessible. The key is that 
the hardware vendors must accept the trend toward API and service standardization. 

Also, ACS run-time support in the future must facilitate design integration between 
reconfigurable devices and other components in the system. The ADAPTERS project has 
been a first step toward this goal. Without a run-time layer that enables seamless 
integration between heterogeneous components, system engineers will spend too much 
time building the connections (i.e., buffer management, queue maintenance, timing 
mechanisms) by hand. Such development is error prone, specific to the immediate 
problem, and is not easily reused between different applications and design activities, 
wasting time that is better spent evaluating and improving system architectures. 

ACS run-time support of the future will include task scheduling capabilities. As shown in 
the ADAPTERS demonstrations, run-time scheduling is needed to manage applications at 
the system level and ensure smooth transitions between reconfiguration requests with as 
little overhead as possible. Many scheduling techniques have been developed for 
embedded systems, and it would be worthwhile for someone to evaluate which of these 
techniques can also be applied to the specialized requirements of ACS applications. On the 
ADAPTERS project we have applied the mode-based scheduling of MetaH, and the 
dataflow (event-triggered) scheduling of the DADE run-time execution environment. 

The next generation of ACS run-time support will have more intelligence. A current trend 
in general middleware support is to make the run-time layer reflective, meaning that the 
run-time support is aware of the special dynamic requirements of the application 
execution, and can adapt the application accordingly. For example, as a particular ACS 
application is running, the run-time support may recognize that the algorithm it is currently 
using is suboptimal, based on the trends in the data, and a reconfiguration to a different 
algorithm implementation would improve performance. Such an approach creates a two- 
tiered support infrastructure for adaptation, coordinated between the system level and the 
component level. Other benefits include the following: 

19 



• Flexible control of multiple functions on shared reconfigurable devices 
• Intelligent control of reconfiguration downloads to reduce software overheads 
• Applications that better adapt to the state conditions (algorithm adaptation) 
• Improved fault tolerance. 

The ACS project has identified the value of reconfigurable hardware platforms. For ACS 
to reach its full potential in embedded military applications, the software run-time support 
that drives the hardware will have to evolve and take advantage of adaptation more 
intelligently. 

4.3   Partial Reconfiguration 
In the ADAPTERS project, we took a first look into the applicability of partial 
reconfiguration. The results have been a mixed bag of successes (highlighted by our DES 
demonstration), along with some observations and unresolved issues: 

• Partial reconfiguration has potential for a specialized class of applications, where 
execution parameters impact a modularized portion of an algorithm implementation. 

• Partial reconfiguration is difficult to implement, and must be considered on a case-by- 
case basis because of physical layout constraints. 

• Widespread use of fine-grained partial reconfiguration is unlikely, because its 
implementation is too difficult to generalize for a larger set of applications. More 
research is required to determine the characteristics of partial reconfiguration with 
respect to single-FPGA vs. multi-FPGA solutions, and the relationships between the 
method used to reconfigure the FPGA vs. the improvements in application 
performance 

• If partial reconfiguration is to succeed, board-level APIs and services must continue to 
evolve. The multilevel caching technique developed by USC/ISI for the ADAPTERS 
DES demonstration is a good example. 

• Partial reconfiguration requires better tool support, to gain visibility into the effects of 
partial reconfiguration and understand its limitations. Current design technology is 
limited to the static domain, and does not currently address real-time dynamic issues. 

• New candidate applications should be explored to identify where partial configuration 
works the best. 

4.4   Future ACS Domains 
A key result of the ADAPTERS project is the affirmation that ACS technology has a place 
in future space platforms. Consider the following observations: 

• A trend towards diminishing COTS support is emerging for military/space (and even 
avionics) applications, especially in the areas of operation in extreme environments, 
and fault-tolerance. FPGA vendors typically do offer both avionics and military grade 
products, making life-extension programs possible for certain systems. 

20 



• Future requirements of space-based applications fit ACS technology well. More 
functionality will be hosted on a smaller number of compute devices, and 
reconfigurable technology provides the most flexible approach. 

• FPGAs take up the same amount of physical space as GPPs, but use less power and 
deliver higher performance. 

• An FPGA solution has a built-in fault tolerance. 
• Most space applications operate with real-time constraints that fit the right granularity 

for ACS adaptation. Mode changes trigger reconfiguration in the system, but they are 
relatively infrequent, and adaptation occurs on the order of seconds, which puts the 
reconfiguration overhead within a tolerable range. 

• Candidate applications include high-throughput payload processing applications: 
hyper-spectral imaging, space-based radar, RF surveillance, and digital on-board radio. 

Another future domain for ACS technologies lies at the other end of the spectrum. While 
space platforms represent compute-intensive high-tech domains, we should not neglect 
simpler problems that can benefit from reconfigurable computing. In the world today there 
are many simpler applications that use ASIC technology that could be made more useful 
with an FPGA upgrade. For example, wireless phones can potentially host more 
functionality through RAM-reconfigurable technology without increasing the size of the 
device. Downloading a new configuration, instead of replacing the entire physical unit can 
make hand-held device upgrades more attractive. Hundreds of potential applications are 
out there, and should not be limited to large-scale domains. 

21 



5. Academic Papers 
S. Kumar, et al., "ADAPTERS," Proceedings of the MAPLD '99 Conference, Johns 
Hopkins University, Applied Physics Laboratory, Laurel, Maryland, September 28-30, 
1999. 

S. Kumar, et al., "Programming and Development Environments for Configurable 
Computing Systems", which appeared in the Proceedings of the IEEE Aerospace 2000 
Conference, Big Sky, Montana, March 18-25, 2000.   : 

22 



6. Acknowledgements 
Many people worked on the ADAPTERS project to make it a success: 

Honeywell Laboratories: Devesh Bhatt, Rashmi Bhatt, Kevin Driscoll, John Fischer, John 
Golusky, Bala Kannikeswaran, Sanjaya Kumar (the original principal investigator of the 
project), John Shackleton, Hazel Shirley, Steve Vestal, Mark Vojta, Bill Wren, and Phil 
Zumsteg 

USC/ISI-East: Peter Bellows, Stephen Crago,'Dong-In Kang, Bob Parker, and Brian Schott 

Honeywell Space Systems: Gary Gardner and Jeremy Ramos 

23 



LIST OF ACRONYMS 

ACRONYM 

ACS 

ADAPTERS 

ADL 

API 

ASIC 

ATOT 

ATR 

CAD 

CFAR 

COTS 

DADE 

DARPA 

DES 

DRRTE 

DSP 

FPGA 

GPP 

I/O 

MM) 

NP 

PML 

PMTE 

RAM 

RASSP 

SAGE 

SAR 

SMD 

SLAAC 

USC/ISI 

DESCRIPTION 

Adaptive Computing Systems 

A DomAin-specific Programming and development TEchnology for run- 
time Reconfiguration at the System-level 

Architecture description language 

Application programming interface 

Application-specific integrated circuit 

Architecture TradeOff Toolset 

Automatic target recognition 

Computer aided design 

Constant false alarm rate 

Commercial off the shelf 

Domain-specific application development environment 

Defense Advanced Research Projects Agency 

Data encryption standard 

Dynamic reconfigurable run-time environment 

Digital signal processor 

Field programmable gate array 

General purpose processor 

Input/Output 

Multiple instruction multiple data 

Non-deterministic polynomial 

Performance modeling library 

Partitioning and mapping tradeoff environment 

Random access memory 

Rapid prototyping of application-specific signal processors 

Systems and application genesis environment 

Synthetic aperture radar 

Single instruction multiple data 

Systems Level Applications of Adaptive Computing 

University of Southern California/Information Sciences Institute 

24 



VHDL VHSIC hardware description language 

VHSIC Very high speed integrated circuit 

25 


